Question Number	Acceptable Answers	Mark
1(a)(i)	Measures the final interval $= 2.2$ cm	
	$\mathbf{Or} \text{ measures the total distance} = 14.6 \text{cm} $ (1)	
	Velocity = 1.1 (ms^{-1}) (1) (independent marks, even if MP1 not awarded, 2^{nd} mark can be awarded	2
	if value rounds to 1.1(ms ⁻¹))	
	Example of calculation	
	Velocity = $\frac{0.022 \text{ m}}{0.02 \text{ s}}$ or Velocity = $\frac{0.146 \text{ m} \times 2}{0.02 \text{ s} \times 13}$ Velocity = 1.1 m s ⁻¹	

Question Number	Acceptable Answers	Mark
Number 1(a)(ii)	Use of $a = \frac{v - u}{t}$ or suitable equation of motion to calculate a (1) $a = 4.2 \text{ or } 4.3 \text{ m s}^{-2}$ (allow full ecf for values substituted from (i)) (1) (in (i) and (ii) only penalise once for use of 14 gaps) Example of calculation Using $a = \frac{v - u}{t}$ $a = \frac{1.1 \text{ m s}^{-1} - 0}{13 \times 0.02 \text{ s}}$ $a = 4.2 \text{ m s}^{-2}$	2

Question	Acceptable Answers		Mark
Number			
1(b)	No friction/drag between tape/trolley and timer.		
	Or		
	The computer does the calculation		
	Or		
	Student doesn't calculate velocity	(1)	1
	(NOT precision, accuracy, plots graph automatically, reaction time, parallax, human error)		
	Total for question		5

PhysicsAndMathsTutor.com

Question Number	Answer	Mark
2 (a)	Show that the acceleration is about 2 m s ⁻² .	
	Use of equation of motion suitable to find acceleration Correct answer (1.5 (m s ⁻²))	(1) (1)
	Example of calculation	
	$s = ut + 1/2 at^2$	
	$a = 2 \times 2500\ 000\ m\ /\ ((30 \times 60)s)^2$	
	$= 1.54 \text{ m s}^{-2}$	
2 (b)	Calculate the maximum speed.	
	Use of equation of motion suitable to find maximum speed	(1)
	Correct answer (2700 m s ⁻¹)	(1)
	Example of calculation	
	$\overline{v} = u + at$	
	$= 0 + 1.5 \text{ m s}^{-2} \text{ x} (30 \text{ x} 60) \text{ s}$	
	$= 1.5 \text{ m s}^{-2} \text{ x} (30 \text{ x} 60) \text{ s}$	
	= 2700 m s ⁻¹ (lise of 2 m s ⁻² $>$ 2600 m s ⁻¹ 1 F4 m s ⁻² $>$ 2772 m s ⁻¹)	
2 (c)	(Use of 2 m s ⁻² \rightarrow 3600 m s ⁻¹ , 1.54 m s ⁻² \rightarrow 2772 m s ⁻¹), Calculate the force which must be applied to decelerate the	
2 (0)	train.	
	Use of $F = ma$	(1)
	Correct answer (680 000 N)	(1)
	Example of calculation	
	F = ma	
	$= 4.5 \times 10^5 \text{ kg} \times 1.5 \text{ m s}^{-2}$	
	$= 675\ 000\ N$	
	(Use of 2 m s ⁻² → 900 000 N, 1.54 m s ⁻² → 693 000 N)	
	Total for question	6

Question Number	Answer		Mark
3(a)(i)	Use of $v^2 = u^2 + 2as$ $a = 2.9 \text{ (m s}^{-2})$	(1) (1)	2
		(1)	-
	Example of calculation $a = \frac{(15 \text{ m s}^{-1})^2 - (0 \text{ m s}^{-1})^2}{2 \times 39 \text{ m}}$		
	$a = \frac{2 \times 39 \text{ m}}{2 \times 29 \text{ m}}$		
	$a = 2.88 \text{ m s}^{-2}$		
3(a)(ii)	Use of $F = ma$ to find a or F Maximum $a = 3.2 \text{ m s}^{-2}$	(1)	
	Or Force in (a)(i) $F = 580$ N(or 600 N)	(1)	
	$(3.2 \text{ m s}^{-2} \text{ is the maximum acceleration because})$ the box must have		
	the same acceleration as the lorry	(1)	3
	Example of calculation		
	a = 630N/200 kg $a = 3.15 \text{ m s}^{-2}$		
		(1)	
3(b)(i)	$W_{\text{parallel}} = W \sin \theta$ $W_{\text{perpendicular}} = W \cos \theta$	(1) (1)	2
	(Accept <i>mg</i> , 200 <i>g</i> or 1962 for <i>W</i>)		
3(b)(ii)	$F = W \sin \theta$ Or $F = W_{\text{parallel}}$ Or $R = W \cos \theta$ Or $R = W_{\text{perpendicular}}$	(1)	
	Substitute $F = 0.32R$ into candidate's equation for F or R	(1)	
	Use of $\sin\theta/\cos\theta = \tan\theta$	(1)	
	$\theta = 18^{\circ}$	(1)	4
	Total for question		11

Question Number	Answer		Mark
4(a)	Correct trajectory e.g.	(1)	1
4(b)(i)	Use of trig function appropriate to calculate the horizontal component of velocity Or 2.25 (m s ⁻¹) seen Use of $v = s/t$	(1) (1)	
	time = 0.67 (s) Example of calculation $u_h = 4.5 \text{ m s}^{-1} \times \cos 60^\circ = 2.25 \text{ m s}^{-1}$ t =	(1)	3
4(b)(ii)	Use of trig function appropriate to calculate the vertical component of velocity Or $3.9 \text{ (m s}^{-1})$ seen Use of suitable equation(s) of motion to find the vertical displacement from the release point after 0.67 s Displacement from release point = 0.41 - 0.42 m (ecf for <i>t</i> from (b)(i))	(1) (1) (1)	
	(show that value of 0.7 s gives displacement = $0.32 \text{ m} - 0.33 \text{ m}$) Statement to explain why the ball will miss/overshoot the ring e.g. the ball passes below the net Or the ball will not have reached the height of the ring yet Or $0.41 < 0.7$ Or ball undershoots ring (Explanation must be consistent with the calculated value of displacement)	(1)	4
	Example of calculation $u_v = 4.5 \text{ m s}^{-1} \times \sin 60^\circ = 3.9 \text{ m s}^{-1}$ $s = (3.9 \text{ m s}^{-1} \times 0.67 \text{ s}) + (-\frac{1}{2} \times 9.81 \text{ m s}^{-2} \times (0.67 \text{ s})^2)$ s = 0.41 m		
4(b)(iii)	The ball would be travelling with a decreasing (horizontal) speed Or there would be a (horizontal) deceleration	(1)	
	The (calculated) time would increase Total for question	(1)	2 10

Question Number	Answer		Mark
5(a)	A		
J(a)	(Use of) acceleration = gradient Or $a = \frac{\Delta v}{(\Delta)t}$ stated		
	(Use of) acceleration = gradient Or $(\Delta)t$ stated		
	Or use of $a = \frac{v-u}{z}$ with $u > 1$	(1)	
	O use of $u = \frac{1}{r}$ with $u > 1$		
	$\frac{1}{2}$	(1)	
	Answers in range 2.0 to 2.8 (ms ⁻²)	(1)	3
5(b)	Answers in range 2.1 to 2.5 m s ⁻²	• •	
5 (0)	Max 4	(1)	
	changing gradient Or graph curves	(1)	
	The idea of a changing acceleration	(1)	
	Decreasing acceleration	(1)	
	Resultant force decreasing	(1)	4
	Drag increases (with speed)	(1)	4
- / >	[Ignore references to initial constant acceleration/straight line initially/(0-3) s]		
5 (c)	Zero (no u.e.) Or there is no resultant force	(1)	1
5(d)	Attempt to find total distance travelled	(1)	
	Distance in range 900 (m) to 1100 (m)	(1)	
	Use of speed = distance / time	(1)	
	Speed = 20.0 to 21.0 (m s ⁻¹)		
	Or comparison of their distance with 1100m	(1)	
	[A number of incorrect methods give the value of $20 - 21$ m s ⁻¹ . Only give final		
	mark if correct method used using total distance and time of 50 s.]		
	OR		
	Use of line at 22 m s ^{-1}	(1)	
	Use of area under graph	(1)	
	Simple comparison of area between graph and line above and below the line	(1)	
	(e.g. more below than above)	. /	4
	Quantitative comparison (e.g. 60 (m) above and 140 (m) below)	(1)	
	Total for question		12

Question	Answer	Mark
Number		
6 (a)(i)	State or show $E_p \rightarrow E_k$ (1)	
	$mgh = \frac{1}{2} mv^2 \text{ Or } gh = \frac{1}{2} v^2 $ (1)	
	Use of $mgh = \frac{1}{2} mv^2$ Or $gh = \frac{1}{2} v^2$ (1)	4
	$v = 3.4 \text{ (m s}^{-1}) \text{ [no ue]}$ (1)	
	Calculation using $v^2 = u^2 + 2as$ scores 0 marks Use of $g = 10$ N kg ⁻¹ gives 3.46 m s ⁻¹ , 3.5 m s ⁻¹ , max 3 marks Do not credit bald answer (Candidates may calculate in steps using $m = 40$ kg, mark 2 becomes use of $E_p = mgh$ and mark 3 becomes use of $E_k = \frac{1}{2} mv^2$)	
	Example of calculation $E_p = E_k$ $mgh = 1/2 mv^2$ $gh = 1/2 v^2$ 9.81 N kg ⁻¹ x 0.6 m = 1/2 v^2 v = 3.4 m s ⁻¹	
6 (a)(ii)	All $E_p \rightarrow E_k$ / no friction/air resistance / no stretch of cable / $u = 0$ / no push at start / no energy transferred to other forms (1) (No energy lost is not sufficient.)	1
6 (b)(i)	Label 2 x tension (7) parallel to cable and away from P only(1)Label weight / pull of child / W / mg vertically downward(1)	2
	One correct and one incorrect scores 1 mark. Two correct and one incorrect scores 1 mark. Two incorrect scores 0. Ignore unlabelled arrows.	
6(b)(ii)	Use of $W = mg$ (1) Use of correct trigonometrical function (T sin 2 = W/2)(accept with missing factor 2, i.e. T sin 2° = W)(do not accept tan) (accept cos 88)(1) Force = 5600 (N) [no ue] (1) Accept calculation of 11 200 N divided by 2 at the end for full marks only if accompanied by an explanation, such as 'there are two cables'	3
	Example of calculation W = mg $W = 40 \text{ kg x } 9.81 \text{ N kg}^{-1} = 392 \text{ N}$ $T \sin 2^\circ = W/2$ $T = 392 \text{ N} / 2 \text{ x sin } 2^\circ$ T = 5621 N	
	Total for question	10

Question Number	Answer	Mark
7 (a)	Explain why the coin on the ruler has no horizontal motion	
	Max 2 points – (Max 1 if no reference to force / friction)	
	Initially at rest (1) (Smooth surface so) no friction (1)	
	No horizontal force / only vertical forces (1)	
	So (from Newton's first law) no horizontal acceleration / no change in horizontal velocity (1)	(Max 2)
7(b)	Explain how this demonstrates the independence of horizontal and vertical motion	
	They have the same vertical acceleration / force / motion / (instantaneous) velocity (1) Although only one has horizontal motion/velocity (1)	(2)
7(c)	Show that the coin on the ruler strikes the ground with a speed of about 4	
/(C)	ms^{-1}	
	Use of $v^2 = u^2 + 2as$ OR Use of $mgh = \frac{1}{2}mv^2$ Or other correct combinations of equations of motion (1)	(2)
	Correct answer (4.1 m s^{-1}) (1)	(2)
	Example of calculation	
	$v^2 = u^2 + 2as$	
	$v^2 = 2 \times 9.81 \text{ m s}^{-2} \times 0.85 \text{ m}$	
	$= 4.1 \text{ m s}^{-1}$	
7(d)	Calculate the velocity at which it strikes the ground.	
	Use of distance/time for horizontal speed (1)	
	Use of Pythagoras with velocity components (1)	
	Correct answer for resultant velocity magnitude $[4.9 \text{ m s}^{-1}]$ (1)	
	Use of trigonometrical function with velocities for the angle (1) Correct answer for angle [58°] (1)	(5)
	OR	
	Use of distance/time for horizontal speed (1)	
	Use of trigonometrical function with velocity components for the angle (1)	
	Correct answer for angle [58°] (1)	
	Use of trigonometrical function for the resultant velocity magnitude (1) Correct answer for resultant velocity magnitude $[4.9 \text{ m s}^{-1}]$ (1)	
	[Allow ecf from mark 3 of the calculation in this question]	
	Example of calculation	
	$v = s/t = 1.1 \text{ m} / 0.42 \text{ s} = 2.6 \text{ m s}^{-1}$ $v^{2} = v_{h}^{2} + v_{v}^{2}$	

$= (2.6 \text{ m s}^{-1})^2 + (4.1 \text{ m s}^{-1})^2$ v = 4.9 m s ⁻¹	
$v = 4.9 \text{ m s}^{-1}$	
from horizontal, tan (angle) = $4.1 \text{ m s}^{-1}/2.6 \text{ m s}^{-1}$	
angle = 58°	
(N.B. Use of 4 m s^{-1} gives and answer of 4.8 m s^{-1} and 57°)	
Total for question	11